How to prevent AI from provoking the next financial crisis | 如何防止人工智慧引發下一次金融危機 - FT中文網
登錄×
電子郵件/用戶名
密碼
記住我
請輸入郵箱和密碼進行綁定操作:
請輸入手機號碼,透過簡訊驗證(目前僅支援中國大陸地區的手機號):
請您閱讀我們的用戶註冊協議私隱權保護政策,點擊下方按鈕即視爲您接受。
FT英語電臺

How to prevent AI from provoking the next financial crisis
如何防止人工智慧引發下一次金融危機

New systems have benefits for markets, but risks to stability must be managed
新體系對市場有利,但穩定性風險必須加以管理
00:00

undefined

Amid talk of job cuts due to artificial intelligence, Gary Gensler thinks robots will actually create more work for financial watchdogs. The US Securities and Exchange Commission chair puts the likelihood of an AI-driven financial crisis within a decade as “nearly unavoidable”, without regulatory intervention. The immediate risk is more of a new financial crash than a robot takeover.

Gensler’s critics argue that the risks posed by AI are not novel, and have existed for decades. But the nature of these systems, created by a handful of hugely powerful tech companies, requires a new approach beyond siloed regulation. Machines may make finance more efficient, but could do just as much to trigger the next crisis.

Among the risks Gensler pinpoints is “herding”, in which multiple parties make similar decisions. Such behaviour has played out countless times: the stampede of financial institutions into packages of subprime mortgages sowed the seeds of the 2008 financial crisis. The growing reliance on AI models produced by a few tech companies increases that risk. The opaque nature of the systems also makes it difficult for regulators and institutions to assess what data set they are reliant on.

Another danger lies in the paradox of explainability, noted by Gensler in a paper he co-wrote in 2020 as an MIT academic. If AI predictions could be easily understood, simpler systems could be used instead. It is their ability to produce new insights based on learning that makes them valuable. But it also hampers accountability and transparency; a lending model based on historical data could produce, say, racially biased results, but identifying this would take post facto investigation.

Reliance on AI also entrenches power in the hands of technology companies, which are increasingly making inroads into finance but are not subject to strict oversight. There are parallels with the world of cloud computing in finance. In the west, the triumvirate of Amazon, Microsoft and Google provides services to the biggest lenders. This concentration raises competition concerns, and affords at least the theoretical ability to move markets in the direction of their choice. It also generates systemic risk: an outage at Amazon Web Services in 2021 affected companies ranging from robot vacuum producer Roomba to dating app Tinder. An issue with a trading algorithm could trigger a market crash.

Watchdogs have pushed back against the awkward nexus of technology and finance in the past, as with Meta’s digital currency, Diem, formerly known as Libra. But to mitigate the risks from AI requires expanding the perimeter of financial regulation or pushing authorities across different sectors to collaborate far more effectively. Given the potential for AI to affect every industry, that co-operation should be broad. The history of credit default swaps and collateralised debt obligations shows how dangerous “siloed” thinking can be.

The authorities will also need to take a leaf from the book of those convinced that AI is going to conquer the world, and focus on structural challenges rather than individual cases. The SEC itself proposed a rule in July addressing possible conflicts of interest in predictive data analytics, but it was focused on individual models used by broker-dealers and investment advisers. Regulation should study the underlying systems as much as specific cases.

Neo-Luddism is not warranted; AI is not inherently negative for financial services. It can be used to speed up the delivery of credit, support better trading or combat fraud. That regulators are engaging with the technology is also welcome: further adoption could accelerate data analysis and develop institutional understanding. AI can be a friend to finance, if the watchmen have the right tools to keep it on the rails.

版權聲明:本文版權歸FT中文網所有,未經允許任何單位或個人不得轉載,複製或以任何其他方式使用本文全部或部分,侵權必究。

Meta將爲雷朋眼鏡新增顯示螢幕,智慧眼鏡競賽愈演愈烈

這家社群媒體集團加快了與蘋果和谷歌競爭「擴增實境」頭顯的計劃。

川普任命鮑爾批評人士擔任最高經濟職務

川普任命經濟學家斯蒂芬•米蘭擔任經濟顧問委員會主席,並任命億萬富翁投資者斯蒂芬•費恩伯格擔任國防部副部長。

會計師事務所對美國資格考覈改革提出擔憂

代表「四大」的機構CAQ批評稱,改革美國會計師資格規則的計劃可能會使公司面臨歧視訴訟,並增加入行障礙。

川普和海湖莊園的力量

這位前房地產開發商非常瞭解如何將建築和空間有效地用作宣傳。

爲2024年的世界感到高興的十個理由

從巴黎聖母院的修復到《抑制熱情》的大結局,這一年其實並不算太糟。

2025年德國大選:主要的競選承諾是什麼?

各大政黨提出了截然不同的計劃,以重振歐洲最大經濟體的命運。
設置字型大小×
最小
較小
默認
較大
最大
分享×